MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS)

I-B.Tech I-Semester Regular Examinations (MR23), February - 2024
Basic Electrical \& Electronics Engineering (Common to ECE, CSE (DS), AI\&DS, CSE (AI\&ML))

Time: 3 hours
Max. Marks: 70

1. Question Paper consist of two parts viz., Part -A \& Part -B with equal weightage of 35 marks each.
2. Answer all 5 Questions in Section A of each Part. Each question carries 1 Mark.
3. Answer one question from Section B of each part. Each question carries 10 Marks.

PART-A
SECTION-A (1 X 5M = 5M)

		Marks	CO	BL
1.a)	State ohm's law and mention the limitations of it.	$(1 \mathrm{M})$	CO1	L2
b)	State super position theorem.	$(1 \mathrm{M})$	CO3	L2
c)	List the materials used for (a) yoke (b) brush	$(1 \mathrm{M})$	CO2	L2
d)	State the Fleming's right hand rule.	$(1 \mathrm{M})$	CO3	L2
e)	List out the applications of solar energy.	$(1 \mathrm{M})$	CO2	L2

SECTION-B ($\mathbf{3} \mathbf{X ~ 1 0 M ~ = ~ 3 0 M) ~}$

2a.	A sine wave has a peak value of 12V. Determine the following values. b) Average Value ii) R.M.S. Value iii) Peak Factor iv) Form factor. State and Derive an expression for voltage division rule.	(5M)	CO1	L2
(OR)	CO1	L2		
3a.				
b.Define the following: i) KCL ii) KVL iii) Practical voltage source iv) Ideal current source what is the behaviour of Through Pure Inductor only.	(5M)	CO1	L2	
(5M)	CO1	L2		

4a. b.	Describe the working of DC motor. Explain the construction and working principle of wheat stone bridge.	$\begin{aligned} & (5 \mathrm{M}) \\ & (5 \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \end{aligned}$	L2
(OR)				
5a. b.	Explain the working Principle of a single-phase transformer with a neat sketch. Explain the construction of Permanent Magnet Moving Coil.	$\begin{aligned} & \hline(5 \mathrm{M}) \\ & (5 \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \end{aligned}$	$\begin{aligned} & \text { L2 } \\ & \text { L3 } \end{aligned}$

6a. Compression between Conventional and Non-Conventional Energy Resources.
b. Calculate the electricity bill amount for a month of 31 days, if the

$(5 \mathrm{M})$	CO 3	L 3
$(5 \mathrm{M})$	CO 3	L 2

charge of 55 Rs and tax of 5\% on consumed power.				
(OR)				
7a.	Give a brief description on wind Power plants.	$(5 \mathrm{M})$	CO3	L2
b.	Write a short on Safety Precautions to avoid electric shock.	$(5 \mathrm{M})$	CO3	L2

PART-B

SECTION-A (1 X 5M = 5M)

8. a)		What is meant by Bipolar Junction Transistor? Draw the symbols for NPN and PNP Transistor?	Marks	CO
BL				
b)	Derive the relation between alpha and beta?	CO4	L1	
c)	What is meant by Rectifier, Filter and Regulator?	$(1 \mathrm{M})$	CO4	L1
d)	What are the different types of filters used in electronic circuits?	(1M)	CO5	L2
e)	Mention and draw the truth tables for AND,OR and NOT Gates?	$(1 \mathrm{M})$	CO6	L1

SECTION-B ($3 \times 10 M=\mathbf{3 0 M}$)

9a.	What is meant by P-N Junction diode? Explain P-N Junction diode in Forward and Reverse Bias and also explain V-I Characteristics? b. What is meant by Zener diode? Explain V-I Characteristics and two mechanisms?	(5M)	CO4	L2				
(OR)							CO4	L1
 a	Explain Common Emitter(CE) Configuration in detail with its Input and Output Characteristics with circuit diagram? Explain Elementary Treatment of Small Signal CE Amplifier with circuit diagram?	$(5 \mathrm{M})$	CO4	L 2				
b.		(5M)	CO4	L2				

11a.	What is meant by LMPS? Explain in detail about LMPS with a neat block diagram? b.	$(5 \mathrm{M})$	CO5	L4
Explain in detail about Half Wave Rectifier with Necessary	$(5 \mathrm{M})$	CO5	L 2	
(OR)				(5M)
12a.	Explain in detail about Full Wave Bridge Rectifier with Necessary derivations?	L 2		
b.	With a neat block diagram explain Public Address System in detail?	CO5	L2	

13a.	Explain in detail different codes produced in Digital Electronics? b.	$(5 \mathrm{M})$	CO6	L2
	Explain in detail about Combinational circuits with Half and Full Adder? also explain sequential circuits in detail?	$(5 \mathrm{M})$	CO6	L2
(OR)				

