Course Code: 23ES11T03

MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS)

I-B.Tech I-Semester Regular Examinations (MR23), February - 2024 Basic Electrical & Electronics Engineering (Common to ECE, CSE (DS), AI&DS, CSE (AI&ML))

Time: 3 hours Max. Marks: 70

- 1. Question Paper consist of two parts viz., Part -A & Part -B with equal weightage of 35 marks each.
- 2. Answer all 5 Questions in Section A of each Part. Each question carries 1 Mark.
- 3. Answer one question from Section B of each part. Each question carries 10 Marks.

 $\frac{PART-A}{SECTION-A (1 X 5M = 5M)}$

	$SECTION-A (1 \times 5M = 5M)$					
		Marks	CO	BL		
1.a)	State ohm's law and mention the limitations of it.	(1M)	CO1	L2		
b)	State super position theorem.	(1M)	CO3	L2		
c)	List the materials used for (a) yoke (b) brush	(1M)	CO2	L2		
d)	State the Fleming's right hand rule.	(1M)	CO3	L2		
e)	List out the applications of solar energy.	(1M)	CO2	L2		
	SECTION-B (3 X 10M = 30M)					
2a.	A sine wave has a peak value of 12V. Determine the following	(5M)	CO1	L2		
b.	values. i) Average Value ii) R.M.S. Value iii) Peak Factor iv) Form factor. State and Derive an expression for voltage division rule.	(5M)	CO1	L2		
	(OR)					
3a.	Define the following:	(5M)	CO1	L2		
b.	i) KCL ii) KVL iii) Practical voltage source iv) Ideal current source what is the behaviour of Through Pure Inductor only.	(5M)	CO1	L2		
4a.	Describe the working of DC motor.	(5M)	CO2	L2		
b.	Explain the construction and working principle of wheat stone	(5M)	CO2	L3		
	bridge.					
(OR)						
5a.	Explain the working Principle of a single-phase transformer with a	(5M)	CO2	L2		
b.	neat sketch.		CO2	L3		
	Explain the construction of Permanent Magnet Moving Coil.	(5M)				
				·		
6a.	Compression between Conventional and Non-Conventional Energy	(5M)	CO3	L3		
	Resources.	(53.5)				
b.	Calculate the electricity bill amount for a month of 31 days, if the following devices are used as specified:	(5M)	CO3	L2		
	a) 3 bulbs of 30 watts for 5 hours					
	b) 4 tube lights of 60 watts for 8 hours c) 1 fridge of 300 watts for 24 hours					
	d) 1 motor of 1.5HP for 2hours					
1		1	ĺ			

Given the rate of electricity is 5 Rs. per unit and having a fixed

	charge of 55 Rs and tax of 5% on consumed power.					
(OR)						
7a.	Give a brief description on wind Power plants.	(5M)	CO3	L2		
b.	Write a short on Safety Precautions to avoid electric shock.	(5M)	CO3	L2		

$\frac{PART-B}{SECTION-A (1 X 5M = 5M)}$

$\overline{SECTION-A (1 \times 5M = 5M)}$							
		Marks	CO	BL			
8.	What is meant by Bipolar Junction Transistor? Draw the	(1M)	CO4	L1			
a)	symbols for NPN and PNP Transistor?						
b)	Derive the relation between alpha and beta?	(1M)	CO4	L1			
c)	What is meant by Rectifier, Filter and Regulator?	(1M)	CO5	L1			
d)	What are the different types of filters used in electronic circuits?	(1M)	CO5	L2			
e)	Mention and draw the truth tables for AND,OR and NOT Gates?	(1M)	CO6	L1			
<u>SECTION-B (3 X 10M = 30M)</u>							
9a.	What is meant by P-N Junction diode? Explain P-N Junction diode	(5M)	CO4	L2			
:	in Forward and Reverse Bias and also explain V-I Characteristics?						
b. 1	What is meant by Zener diode? Explain V-I Characteristics and two	(5M)	CO4	L1			
	mechanisms?						
	(OR)	•					
10	Explain Common Emitter(CE) Configuration in detail with its Input	(5M)	CO4	L2			
a	and Output Characteristics with circuit diagram?						
	Explain Elementary Treatment of Small Signal CE Amplifier with						
b.	circuit diagram?	(5M)	CO4	L2			
110	What is moont by IMPC2 Freeloin in datail about IMPC with a	(5M)	COE	T A			
11a.	What is meant by LMPS? Explain in detail about LMPS with a	(5M)	CO5	L4			
h	neat block diagram?	(5M)	CO5	L2			
b.	Explain in detail about Half Wave Rectifier with Necessary derivations?	(3141)	CO3	LZ			
	(OR)						
12a.	Explain in detail about Full Wave Bridge Rectifier with Necessary	(5M)	CO5	L2			
12a.	derivations?	(3111)	CO3	1/2			
b.	With a neat block diagram explain Public Address System in		CO5	L2			
J.	detail?	(5M)	CO3				
	detail:	(61.1)					
13a.	Explain in detail different codes produced in Digital Electronics?	(5M)	CO6	L2			
b.	Explain in detail about Combinational circuits with Half and Full		CO6	L2			
	Adder? also explain sequential circuits in detail?	(5M)					
	(OR)						
14a.	What is meant by Flip-flop? explain different types of Flip-flops	(5M)	C06	L2			
b.	used in Digital Electronics?						
	What is meant by Registers? Explain different types of Registers	(5M)	C06	L2			
	used in detail in Digital Electronics?						
